Alexandros Graikos

PhD student at Stony Brook University. Working on generative models for images.

I am part of the Computer Vision Lab, advised by Dimitris Samaras. You can find more details about our work on diffusion models for the digital histopathology and satellite image domains here.

I also interned at Microsoft Research. My mentor is Nebojsa Jojic, with whom we work on interesting diffusion model problems.

me?

Research

GIF Toggle

Fast constrained sampling in pre-trained diffusion models

Alexandros Graikos, Nebojsa Jojic, Dimitris Samaras
Preprint
Using Newton's method we speed up training-free inference with arbitrary constraints up to 30x. This is the algorithm that powers ZoomLDM.

GIF Toggle

ZoomLDM: Latent Diffusion Model for multi-scale image generation

Srikar Yellapragada*, Alexandros Graikos*, Kostas Triaridis, Prateek Prasanna, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras
CVPR, 2025
We propose a multi-scale diffusion model to make generation of massive pathology images feasible.

GIF Toggle

Learned representation-guided diffusion models for large-image generation

Alexandros Graikos*, Srikar Yellapragada*, Minh-Quan Le, Saarthak Kapse, Prateek Prasanna, Joel Saltz, Dimitris Samaras
CVPR, 2024
We use self-supervised models to provide annotations for diffusion models in digital pathology. Exploiting the unique structure of the data, we synthesize large images with only a patch-based model.

GIF Toggle

∞-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions

Minh-Quan Le*, Alexandros Graikos*, Srikar Yellapragada, Rajarsi Gupta, Joel Saltz, Dimitris Samaras
ECCV, 2024
Using ∞-dimensional diffusion models to generate large pathology and satellite images.

GIF Toggle

Conditional Generation from Unconditional Diffusion Models using Denoiser Representations

Alexandros Graikos, Srikar Yellapragada, Dimitris Samaras
BMVC, 2023
We show that we can learn to control generation with as few as 20 examples using the existing denoiser representations.

GIF Toggle

GFlowNet-EM for learning compositional latent variable models

Edward Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, Yoshua Bengio
ICML, 2023
A GFlowNet can be used as the encoder in a discrete autoencoder model. The flexibility of GFlowNets opens up possibilities for training image encoders with compositional latents.

GIF Toggle

Diffusion models as plug-and-play priors

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, Dimitris Samaras
NeurIPS, 2022
Diffusion models can be used in inference tasks without any additional training. You can even solve the traveling salesman problem with a diffusion model (left).

GIF Toggle

Resolving label uncertainty with implicit generative models

Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, Nebojsa Jojic
UAI, 2022
Images with imprecise annotations can be used to define an implicit generative model. An implicit generative model can resolve the uncertainty of the labels, making the annotations precise.

GIF Toggle

Single-Image Based Food Volume Estimation

Alexandros Graikos, Vasileios Charisis, Dimitrios Iakovakis, Stelios Hadjidimitriou, Leontios Hadjileontiadis
HCI International, 2020
Training and applying monocular depth estimation models to estimate the food volume from a given RGB image.

GIF Toggle

Monocular Depth Estimation using Generative Adversarial Networks

Alexandros Graikos, Anastasios Delopoulos
Undergraduate Thesis, 2018
Adding GAN losses to monocular depth estimation models improves predicted depth accuracy.

Papers

2025

Pathology Image Compression with Pre-trained Autoencoders

Srikar Yellapragada, Alexandros Graikos, Kostas Triaridis, Zilinghan Li, Tarak Nath Nandi, Ravi K Madduri, Prateek Prasanna, Joel Saltz, Dimitris Samaras
Preprint

ZoomLDM: Latent Diffusion Model for multi-scale image generation

Srikar Yellapragada*, Alexandros Graikos*, Kostas Triaridis, Prateek Prasanna, Rajarsi R. Gupta, Joel Saltz, Dimitris Samaras
CVPR, 2025

2024

Gen-SIS: Generative Self-augmentation Improves Self-supervised Learning

Varun Belagali*, Srikar Yellapragada*, Alexandros Graikos, Saarthak Kapse, Zilinghan Li, Tarak Nath Nandi, Ravi K Madduri, Prateek Prasanna, Joel Saltz, Dimitris Samaras
Preprint

Fast constrained sampling in pre-trained diffusion models

Alexandros Graikos, Nebojsa Jojic, Dimitris Samaras
Preprint

∞-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions

Minh-Quan Le*, Alexandros Graikos*, Srikar Yellapragada, Rajarsi Gupta, Joel Saltz, Dimitris Samaras
ECCV, 2024

Diffusion-Refined VQA Annotations for Semi-Supervised Gaze Following

Qiaomu Miao, Alexandros Graikos, Jingwei Zhang, Sounak Mondal, Minh Hoai, Dimitris Samaras
ECCV, 2024

Learned representation-guided diffusion models for large-image generation

Alexandros Graikos*, Srikar Yellapragada*, Minh-Quan Le, Saarthak Kapse, Prateek Prasanna, Joel Saltz, Dimitris Samaras
CVPR, 2024

PathLDM: Text conditioned Latent Diffusion Model for Histopathology

Srikar Yellapragada*, Alexandros Graikos*, Prateek Prasanna, Tahsin Kurc, Joel Saltz, Dimitris Samaras
WACV, 2024

2023

Conditional Generation from Unconditional Diffusion Models using Denoiser Representations

Alexandros Graikos, Srikar Yellapragada, Dimitris Samaras
BMVC, 2023

S-volsdf: Sparse multi-view stereo regularization of neural implicit surfaces

Haoyu Wu, Alexandros Graikos, Dimitris Samaras
ICCV, 2023

GFlowNet-EM for learning compositional latent variable models

Edward Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, Yoshua Bengio
ICML, 2023

2022

Diffusion models as plug-and-play priors

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, Dimitris Samaras
NeurIPS, 2022

Resolving label uncertainty with implicit generative models

Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, Nebojsa Jojic
UAI, 2022

2020

Single-Image Based Food Volume Estimation

Alexandros Graikos, Vasileios Charisis, Dimitrios Iakovakis, Stelios Hadjidimitriou, Leontios Hadjileontiadis
HCI International, 2020